Chọn ngôn ngữ:    

Nghiên cứu

Tóm tắt nghiên cứu động cơ biogas-hydrogen

TÓM TẮT KẾT QUẢ NGHIÊN CỨU ĐỘNG CƠ BIOGAS-HYDROGEN

 
 

 

Tóm tắt

1. Năng lượng tái tạo

Để đảm bảo sự phát triển bền vững, các nhà khoa học từ lâu đã nghiên cứu phát triển công nghệ ứng dụng các loại nhiên liệu tái tạo có nguồn gốc từ bức xạ mặt trời. Đây là nguồn năng lượng dồi dào và bất tận trong thang đo thời gian của Thái dương hệ. Nguồn năng lượng này phân bố đều khắp trên hành tinh, không phụ thuộc nhiều vào vị trí địa lý như nguồn năng lượng hóa thạch.

Theo cảnh báo của các nhà khoa học thì nếu nhiệt độ bầu khí quyển tăng vượt 2°C so với nhiệt độ trung bình trong giai đoạn 1850-1950 thì sẽ xảy ra hiện tượng “househot”, khi đó nhiệt độ khí quyển đạt giá trị cao nhất trong hơn 1,5 triệu năm qua và con người không còn khả năng điều chỉnh lại hệ thống khí hậu. Để nhân loại không phải đối mặt với hiện tượng khí hậu cực đoan này, tại Hội nghị thượng đỉnh về biến đổi khí hậu thế giới COP21 năm 2015 tại Paris, đa số các quốc gia đã thống nhất cam kết cùng hành động để từ 2020 trở đi, mức phát thải CO2 trên phạm vi toàn cầu giảm dần, đảm bảo nhiệt độ bầu khí quyển cuối thế kỷ 21 không vượt quá ngưỡng cực đoan 2°C so với thời kỳ tiền công nghiệp.

Trong các nguồn phát thải CO2 thì động cơ đốt trong là thủ phạm chính. Vì thế để đạt được mục tiêu COP21, thì trong vòng 3 thập niên tới, nhiên liệu thay thế/tái tạo sử dụng trên động cơ đốt trong phải chiếm ít nhất 60% tổng năng lượng sử dụng so với mức 10% hiện nay. Đây là một thách thức rất lớn đối với các nhà khoa học trong lĩnh động cơ đốt trong và phương tiện vận chuyển cơ giới.

Ở các nước vùng nhiệt đới, sản xuất nông nghiệp thì biogas và điện mặt trời là nguồn năng lượng dồi dào. Biogas từ lâu đã được dùng để đun nấu, thắp sáng. Với mức độ dồi dào của biogas, việc sử dụng nó làm nguồn nhiên liệu này trên động cơ đốt trong để kéo máy công tác tĩnh tại hay lắp trên phương tiện vận chuyển cơ giới là giải pháp rất hữu hiệu để tiết kiệm nhiên liệu hóa thạch và giảm ô nhiễm môi trường. Biogas có thể sử dụng làm nhiên liệu cho động cơ đánh lửa cưỡng bức hay động cơ dual fuel.
Bên cạnh biogas, điện mặt trời đang được phát triển nhanh chóng trong những năm gần đây do chi phí đầu tư giảm. Người ta ước tính với tốc độ phát triển của công nghệ hiện nay, giá thành điện mặt trời cứ sau 10 năm sẽ giảm đi một nửa. Kỷ nguyên năng lượng tái tạo đã chính thức ra đời sớm hơn dự kiến của các nhà khoa học trong thế kỷ trước. Một số dự báo lạc quan cho rằng có thể đến ¾ các nước trên thế giới sử dụng hoàn toàn năng lượng tái tạo trước năm 2050. Khi nguồn điện mặt trời dồi dào thì việc sản xuất hydrogen bằng điện phân nước để làm nhiên liệu cho động cơ đốt trong là giải pháp mang tính bền vững.

Biogas có chỉ số octane lớn, khoảng 130, nên nó có khả năng chống kích nổ tốt. Vì thế nó có thể dùng trên động cơ có tỉ số nén cao để cải thiện hiệu suất nhiệt. Tuy nhiên biogas có chứa CO2, một tạp chất làm giảm tốc độ lan tràn màn lửa và giảm nhiệt trị nhiên liệu, ảnh hưởng đến tính năng của động cơ. Trong khi đó hydrogen là nhiên liệu có tốc độ cháy cao. Tốc độ lan tràn màn lửa của hydrogen đạt 230 cm/s, lớn gần gấp 6 lần tốc độ lan tràn màn lửa của methan CH4 (42 cm/s) nên khi phối hợp với biogas nó sẽ giúp cải thiện chất lượng quá trình cháy của động cơ biogas.

Hydrogen có mật độ năng lượng thấp. Một m3 hydrogen ở trạng thái khí tiêu chuẩn chỉ chứa 3 kWh, nghĩa là chỉ bằng 0,3 lít xăng. Trong công nghiệp để điện phân được 1m3 hydrogen điều kiện thường (0C, áp suất khí trời) cần 1 lít nước và 5 kWh điện. Do vậy nếu dùng điện lưới để điện phân nước thành hydrogen thì không có tính kinh tế. Điện phân nước thành hydrogen chí có ý nghĩa kinh tế-kỹ thuật ở khía cạnh lưu trữ năng lượng điện tái tạo.

Hydrogen còn là một nguồn nhiên liệu đầy tiềm năng với nhiều ưu điểm thuận lợi về môi trường và kinh tế. Hydrogen là nguồn năng lượng sạch, gần như không phát thải khí ô nhiễm mà chỉ sinh ra hơi nước. Từ nước qua quá trình điện phân ta lại có thể thu được hydrogen. Vì vậy, hydrogen là nguồn năng lượng gần như vô tận hay có thể tái sinh được. Hơn nữa, xét về mặt trọng lượng, hydrogen có tỉ trọng năng lượng (năng lương tính trên đơn vị khối lượng) rất cao. Trên thực tế, nhờ hai đặc tính nhẹ và tỉ trọng năng lượng cao này, hydrogen đã được dùng làm nhiên liệu cho tên lửa từ những buổi ban đầu của công nghệ du hành không gian.

Khi dùng làm nhiên liệu, hydrogen có thể được đốt trực tiếp trong các động cơ đốt trong, tương tự như trong các loại phương tiện giao thông chạy bằng xăng dầu phổ biến hiện nay. Hydrogen cũng có thể thay thế khí thiên nhiên để cung cấp năng lượng cho các nhu cầu dân dụng hàng ngày như đun nấu, sưởi ấm, chiếu sáng...v.v. Mặt khác, hydrogen còn có thể được sử dụng làm nguồn năng lượng cung cấp cho hệ thống pin nhiên liệu, nhờ quá trình điện hóa để tạo ra điện năng. Bên cạnh những ưu điểm của hydrogen như đã nêu trên (sạch, tái sinh...), pin nhiên liệu còn chạy rất êm, không gây ra tiếng động, chấn động như động cơ đốt trong. Do dựa trên cơ chế của quá trình điện hóa tạo ra điện năng chứ không phải quá trình đốt như ở động cơ đốt trong, pin nhiên liệu còn đạt hiệu suất sử dụng cao hơn nhiều so với động cơ đốt trong, vì thế mà tiết kiệm năng lượng hơn. Với những ưu thế vượt trội đó, pin nhiên liệu đang ngày càng được quan tâm và dự đoán sẽ trở nên nguồn nhiên liệu đầy triển vọng, một thành phần chủ chốt của nền kinh tế hydrogen trong viễn cảnh tương lai.

2. Sử dụng kết hợp biogas-hydrogen trên động cơ đốt trong
Phụ thuộc vào chiến lược năng lượng của mỗi quốc gia mà nguồn năng lượng thay thế có thể khác nhau. Ở các vùng khí hậu nhiệt đới, năng lượng mặt trời và biogas là những nguồn năng lượng tái tạo có tiềm năng rất cao.  Hai loại năng lượng này có thể được sử dụng trong hệ thống năng lượng tái tạo hybrid, trong đó biogas được làm giàu bằng hydro được tạo ra bởi năng lượng mặt trời. Hệ thống năng lượng tái tạo này phù hợp với việc cung cấp điện không tập trung, là một lựa chọn khả thi cho sản xuất điện bền vững, đặc biệt là ở các vùng nông thôn.

CO2 trong khí biogas có xu hướng làm tăng thời gian cháy trễ và giảm tốc độ lan truyền màng lửa nên sẽ làm giảm hiệu suất nhiệt động cơ. Làm giàu biogas bằng hydro (H2) là giải pháp hữu hiệu để giải quyết vấn đề này. Khi tăng nồng độ hydro trong hỗn hợp hydro-metan thì vận tốc cháy tăng và mở rộng giới hạn cháy. Điều này cho phép tăng tốc độ tỏa nhiệt và tăng  áp suất cực đại. Các nghiên cứu trên động cơ cho thấy giá trị cực đại của áp suất và tốc độ tỏa nhiệt tăng lên và thời gian cháy trễ được rút ngắn khi tăng hàm lượng hydro trong nhiên liệu. Khi bổ sung hydro vào biogas thì thời gian cháy hoàn toàn được rút ngắn so với khi động cơ chạy bằng biogas.
Nói chung, hydro có thể được coi là một chất phụ gia để tăng cường hiệu suất và giảm phát thải ô nhiễm của động cơ. Với lý do là hydro có đặc tính cháy tốt như giới hạn cháy rộng, tốc độ cháy nhanh, khoảng cách dập tắt ngắn và nhiệt độ đoạn nhiệt của ngọn lửa cao. Tuy nhiên, H2 có thể gây ra các kết quả không mong muốn như tăng lượng phát thải NOx vì nhiệt độ cháy cao và giảm hiệu suất nhiệt do tổn thất nhiệt. Việc pha trộn một tỉ lệ vừa phải H2 vào biogas sẽ cải thiện được tính năng của động cơ đồng thời không làm tăng phát thải các chất ô nhiễm. Một số tác giả đề xuất tỉ lệ thể tích hydro tối ưu trong hỗn hợp metan-hydro khoảng 20% ​​để đạt được sự hài hòa giữa tính năng kỹ thuật và mức độ phát thải của động cơ.

3. Sử dụng kết hợp biogas-HHO trên động cơ đốt trong
Phân tích trên cho thấy việc sử dụng biogas pha hydro có nhiều triển vọng trong tiết kiệm năng lượng và bảo vệ môi trường. Thách thức của việc sử dụng rộng rãi hydro liên quan đến việc lưu trữ nhiên liệu, đặc biệt là trên phương tiện giao thông. Trên thực tế, hydro có năng lượng thể tích thấp, do đó, để cung cấp cùng một lượng năng lượng như nhiên liệu truyền thống thì cần có bình chứa nhiên liệu lớn hơn. Giải pháp lưu trữ chính hiện nay là nén hydro trong bình chứa lên tới 700 bar, so với 200 bar đối với khí thiên nhiên để đảm bảo cùng một tầm hoạt động của ô tô. Do đó, sử dụng hydro trong hỗn hợp với oxy (cụ thể là khí HHO) được sản xuất trực tiếp trên xe hoặc tại chỗ đối với động cơ tĩnh bằng năng lượng tái tạo, như các tấm pin mặt trời ngày nay được quan tâm nhiều hơn.

Khí HHO là hỗn hợp của H2 và O2 theo tỷ lệ thể tích là 2:1, có thể được sản xuất bởi quá trình điện phân nước. HHO được sản xuất theo yêu cầu sử dụng của động cơ, không lưu trữ. Bình điện phân tạo khí HHO hoạt động khi động cơ khởi động và dừng khi tắt động cơ. Khi bổ sung HHO vào xăng thì tính năng cháy của dộng cơ gần như tương tự như hỗn hợp xăng-H2, thậm chí còn tốt hơn. So với hỗn hợp xăng-H2, hỗn hợp xăng- HHO cải thiện hiệu suất nhiệt tốt hơn, đặc biệt là duy trì quá trình cháy ổn định khi động cơ hoạt động với hỗn hợp nghèo. Mặt khác, khí HHO chứa đủ oxy để đốt cháy hoàn toàn hydro, do đó không cần không khí cung cấp cho nhiên liệu này. Trong khi đó, trong trường hợp H2, nhiên liệu phải được đốt bằng O2 từ không khí trong hỗn hợp với N2. Do đó, công chu trình của động cơ chạy bằng hỗn hợp xăng-HHO tăng so với khi chạy bằng hỗn hợp xăng-H2 trong cùng điều kiện. Nhờ hỗn hợp cháy hoàn toàn, lượng khí thải CO và HC của động cơ chạy bằng hỗn hợp xăng-HHO giảm so với hỗn hợp xăng-H2.

4. Kết luận
Để hạn chế sự gia tăng nhiệt độ bầu khí quyển chúng ta phải giảm phát thải các chất khí gây hiệu ứng nhà kính, đặc biệt là giảm phát thải CO2. Giảm dần việc sử dụng nhiên liệu hóa thạch và thay vào đó bằng nhiên liệu tái tạo giúp chúng ta giữ được nồng độ CO2 trong bầu khí quyển hiện nay, duy trì được môi trường sống trên hành tinh.
Nhiên liệu hóa thạch hay nhiên liệu tái tạo đều có nguồn gốc từ năng lượng mặt trời. Tuy nhiên việc sử dụng nhiên liệu tái tạo đảm bảo chu trình carbon trong bầu khí quyển khép kín nên không làm tăng nồng độ CO2 trong bầu khí quyển. Năng lượng tái tạo nói chung không ổn định, phụ thuộc rất nhiều vào điều kiện thời tiết, môi trường. Việc lưu trữ năng lượng tái tạo để bù vào những lúc nguồn cung cấp giảm sút là thách thức rất lớn. Việc sử dụng kết hợp nhiều nguồn năng lượng tái tạo giúp chúng ta khắc phục được những nhược điểm này đặc biệt trong điều kiện sản xuất năng lượng trong qui mô nhỏ.

Ở các quốc gia vùng nhiệt đới thì năng lượng mặt trời và biogas rất dồi dào. Việc kết hợp sử dụng hai nguồn năng lượng này trong hệ thống năng lượng tái tạo hybrid sẽ mở ra triển vọng ứng dụng rộng rãi năng lượng tái tạo ở khu vực nông thôn. Biogas được sản xuất từ chất thải nông nghiệp hay chăn nuôi với thành phần chính là CH4 và CO2. Sự hiện diện của CO2 làm giảm nhiệt trị và tốc độ cháy của nhiên liệu làm ảnh hưởng đến hiệu suất cũng như mức độ phát thải các chất ô nhiễm của động cơ. Tuy nhiên biogas có chỉ số octane cao nên có thể sử dụng chúng trong động cơ đánh lửa lưỡng bức với tỷ số nén lớn hay trong động cơ dual fuel.

Hydrogen có thể được sản xuất từ nước thông qua quá trình điện phân bằng điện mặt trời. Hydrogen có thể ở trạng thái riêng rẽ hay trong hỗn hợp với oxygen tùy thuộc quá trình điện phân. Hydrogen có tốc độ cháy gấp 10 lần methane nên là chất phụ gia rất tốt để cải thiện tính năng cháy của biogas. Ngoài tác nhân là chất phụ gia cải thiện tốc độ cháy của biogas, hydrogen còn có thể thực hiện chức năng lưu trữ năng lượng mặt trời thay cho accu. Khi công suất điện mặt trời phát ra cao hơn phụ tải thì phần công suất dư được dùng để sản xuất hydrogen. Hydrogen được dùng để phối hợp với biogas để phát điện. Nhờ vậy hệ thống có thể sản xuất điện năng vào ban đêm hoặc khi bức xạ mặt trời không đủ để sản sinh công suất cần thiết.

Các loại động cơ truyền thống đều có thể được cải tạo để chạy bằng biogas được làm giàu bởi hydrogen hay HHO. Các nghiên cứu đã công bố cho thấy tính năng công tác của động cơ biogas được cải thiện đáng kể khi pha hydrogen hay HHO vào nhiên liệu dù là động cơ đánh lửa cưỡng bức hay dual fuel. Việc nghiên cứu tường tận ảnh hưởng của chế độ vận hành cũng như điều kiện cung cấp nhiên liệu đến tính năng kỹ thuật cũng như mức độ phát thải ô nhiễm của động cơ biogas/hydrogen/HHO sẽ giúp chúng ta định hướng được việc xác định các thông số kết cấu động cơ cũng như hệ thống cung cấp nhiên liệu phù hợp với điều kiện vận hành trong hệ thống năng lượng tái tạo hybrid biogas-năng lượng mặt trời.

So sánh nhiên liệu biogas khi được làm giàu bằng hydrogen/HHO với khi được làm giàu bằng các loại nhiên liệu khác sẽ mở ra triển vọng áp dụng đa dạng nguồn nhiên liệu tái tạo, thay thế cho nhiên liệu truyền thống xăng dầu hiện nay.

Soot Emission Analysis



Soot Emission Analysis in Combustion
of Biogas Diesel Dual Fuel Engine


Bui Van Ga1, Bui Thi Minh Tu2
1 Department of Mechanical Engineering of Transport
2 Department of Electronic and Telecommunication
Danang University of Science and Technology
54, Nguyen Luong Bang, Danang, Vietnam
Email: Địa chỉ email này đã được bảo vệ từ spam bots, bạn cần kích hoạt Javascript để xem nó.

Environmental Science and Sustainable Development, Vol 1, No 2 (2017)

 

Abstract
Soot emission in biogas diesel dual fuel engine has been analyzed by numerical simulation with 2-stape soot formation model of Magnussen. The result shows that soot formation is mainly occurred in diffusion combustion phase of diesel pilot jet. Soot peak value is proportional to the first peak value of ROHR and it is found at around the same crank angle position with the second peak of ROHR. At a given engine speed and diesel content in the fuel, the highest soot peak value is obtained with slightly rich mixture whereas soot concentration in exhaust gas increases monotonically with increasing equivalence ratio. Increasing diesel content in the fuel increases both soot peak value and soot concentration in exhaust gas. At a given equivalence ratio and diesel content in the fuel, engine speed has a moderate effect on soot formation rate but a significant effect on soot combustion rate. Soot concentration in the exhaust gas is practically vanished as equivalence ratio under 0.98 and 15% diesel content in the fuel. This is the ideal operation regime of biogas diesel dual fuel engine in view of soot emission control.
Keywords: Biogas; Renewable energy; Biogas-diesel dual fuel engine; Soot emission; Magnussen model

Full Text:

http://ierek.com/press/index.php/ESSD/article/view/55/pdf









Diễn biến trong buồng cháy

Diễn biến trong buồng cháy động cơ xe gắn máy chạy bằng biogas nén

Clips diễn biến nhiệt độ trong buồng cháy



Clips diễn biến nồng độ O2 trong buồng cháy



Clips diễn biến nồng độ CH4 trong buồng cháy

 

hybrid

Ethanol and Biogas Fuels

Comparison of Performance and Pollution Emission of Engine
Fueled with Gasoline Ethanol Blended Fuels and Biogas

 
Bui Van Ga, Tran Van Nam, Nguyen Van Đong, Bui Van Tan
University of Science and Technology, The University of Danang

Journal of Science and Technology 112 (2016), pp. 93-99

 

 
Abstract
Indicated cycle work of Daewoo engine fueled with E15 at speed 5000rpm increases 5.3% as engine compression ratio increased from 9.5 to 10.3. However the indicated cycle work decreased by 20% when the engine speed increases from 2000rpm to 5000rpm with a given compression ratio. If advance ignition timming is kept constant, the engine cycle work slightly decreases while rising ethanol concentration in gasoline. Indicated engine cycle work decreases about 3% as fueled with E30 and decreases 17% as fueled with biogas containing 95% CH4 in comparison with gasoline case.
As a given engine speed, as engine compression ratio increased from 9.5 to 10.3, the concentration of NOx in the exhaust gas rose 7% and the concentration of CO increased 1%. As the engine speed increases from 2000rpm to 5000rpm NOx concentration in exhaust gas decreases 78.5% while the concentration of CO increased by 5%. As the engine fueled with E5 and E30, NOx in exhaust gas concentrations increase, respectively 3% and 15% while reducing the corresponding CO levels were 17% and 87% compared to gasoline. When running on biogas containing 95% CH4, NOx concentration in the exhaust gas decreased to 43% and CO concentration decreased to 39% compared to gasoline. NOx concentration decreased slightly but CO concentration is almost unchanged while reducing engine load. NOx concentration increases slightly with admission mixture temperature but decreases strongtly with exhaust gas recycled.
Keywords: Alternative Fuels, Ethanol, Biogas, Pollution Emission, Engine Performance

1. Introduction

COP21 summit on climate change organized by the United Nations in Paris has made historic decision after 20 years of negotiations. 195 countries agreed to take actions to reduce the level of gas emissions causing the greenhouse effect for the Earth's temperature does not rise to 20C than average temperatures from 1889 to 1899 period. Increased use of renewable fuel derived from solar energy is one of the fundamental solutions to achieve COP21
Vietnam is a tropical country with nearly 80% of the population live in rural areas. Waste from agriculture and animal husbandry are very good raw material for the production of bio-fuels. Ethanol and biogas are renewable fuels that can be produced from organic substances. Their use does not increase fuel gases causing the greenhouse effect in the atmosphere.
Ethanol blended gasoline has been widely used in many countries around the world with different mixing ratio. According to the regulations of the Government of Vietnam, gasoline 5% volume ethanol (called E5) are widely used across the country from the date 1-12-2015. Ethanol is organic compound, located in the homologous series of ethyl alcohol, has a high octane number than gasoline. Ethanol can therefore be used to raise the octane of the fuel to improve the efficiency of the combustion process in internal combustion engines [1].
Mustafa Koc studied the effects of E50 and E85 ethanol blended gasoline to the engine functionality and pollution emission levels at compression ratio 10, 11 and engine speed ranges from 1500 to 5000 rpm. The results showed that when ethanol is mixed into gasoline, motor torque and fuel consumption increased, but the level of pollution emissions reduction [2]. This study also showed that ethanol blended gasoline allows increase compression ratio of engine without detonation occurs. Due to the latent heat of evaporation and burning temperature of ethanol are higher than gasoline, latency burn time of ethanol is prolonged. Therefore, to increase the efficiency of ethanol blended gasoline-powered engines we need to increase advance ignition angle of the engine as a function of ethanolcontent.Richie Daniel studied empirically the effects of advance ignition angle to performance of ethanol and gasoline engines [3]. Results showed that at a speed 1500 rpm, angle-ignition is about 7-80 for gasoline and about 220 for ethanol [3]. Phuangwongtrakul tested gasohol with different content of ethanol. Results showed that, at 5000 rpm, the largest torque achieved is with ignition angles are 300, 350 and 400 with E10, E30 and E85, respectively [4].
In this paper we study the combustionprocess and performance ofethanol blended gasoline-powered enginewithdifferent concentration of ethanol. Effects of ignition angle and the engine compression ratio are also examined and evaluated.The experiment was conducted at Engine and Automobile Testing Center, University of Science and Technology, The University of Danang.The experiment systemis equipped with AVL’s laboratory equipment. Detailed description of the engine testing system is presented in [5]. Daewoo engine A16DMS was renovated to experiment with a mixture of petrol and ethanol. Thatis a 4-stroke engine, 4 cylinders, cylinder diameter79mm, stroke81,5mm, total cylinder volume 1598cm3, compression ratio 9.5. The maximum powerof the engine withgasoline is 78kW at 5800rpm.
Experimental fuel mixture is E15whichcomposes15% ethanol and 85% RON92trade gasoline, by volume.

2. Simulation of burning process

Figure 1 presents the cylinder and the engine combustion chamber Daewoo wasmeshedto simulate with ANSYS FLUENT software. In the simulationwe used the model k-ε turbulence model and the partially premixed combustion model. Modellingand setting dynamic nets duringthe piston displacement insideengine cylinder is presented in [6]. The fuel’scomponents areadjustedand chemical thermodynamic characteristics of burning mixedare set in a map in order to access quickly during simulationof combustion in the cylinder. In the following simulation, equivalence coefficientof the mixture is selected f = 1.1, ignition angle is 250before TDC.






 


Figure 2 shows the development of burningarea on the cross section which is 8 mm from the top of the combustion chamber. On the cross section, it can be seen that flame is acircle with the radius increases with the crankshaft angle. Figure 3apresentspressureand temperaturevariationin the engine cylinder; Figure 3b presents pressure variations and concentrations of O2, gasoline and ethanol withthe crankshaft angle. At the start of burning, concentration of the substancesdecreases whiletemperature and pressure in the cylinder  increases rapidly.Temperature peak is later than the peak of pressure about 200. Figure 4 presents the fuel concentration variation at speed of 3000 rpm with E15 and with biogas containing 95% CH4. This result shows that the consumption rate of CH4 is approximate gasoline consumption rate. Meanwhile ethanol consumption rate is much lower than the two aforementioned fuel types. Figure 5 presents the influenceof the engine speed to the variationofaverage gasolineconcentration in the combustion mixtureduring burning process. It can be seen thatwhen the enginespeedincreases, the rate of fuel consumption decrease.The correlation between the temperature of the gas mixture and concentrations of CO, NOx when the engine runs on E15 is presented in Figure 6a and 6b.  The mass concentrations of pollutants were averaged over the entire volume of the combustion chamber.It can be seen thatafter the launch of burning process, pollutant concentrations increased rapidly with the increase in temperature and reaches a maximum value before the temperature reaches its peak. CO formation rate depends on the concentration and temperature of the fuel. MaximumCO concentration is achieved atthe high temperature and fuel concentration.




 

Meanwhile, the rate of formation of NOx depends on the oxygen concentration and temperature.Above results show that CO and NOx reach their peaks almost at the same position of crankshaft with different engine speeds(Figure 6a, b). For biogas fuels, peak of COconcentrationis achievedlater than one of NOx (Figure 7). After reaching the maximum value, CO and NOx oxidized with residual oxygen in the mixture and therefore their concentrations reduceduring expansion.

3. Analysis of engine performance
Figure 8a, b introduce the influence of engine speed to work diagram when engine fueled by E15 with compression ratio 9.5 and 10.3.It can be seen thatin thesameoperating conditionsindicated work of the engine decreases as the engine speed increases. This can be explained by the time for burning process decrease whenengine speedincreases. A fire in the fuel department expansion phase, reducing the fertility.A portion of the fuel burns in the expansion phasereducing the fertilityof work.When increaseengine speed from 2000 rpmto 5000 rpm with compression ratio 9.5, the indicatedcycleworkdecreases from 574J/cycle to 457J/cycle(about 20%).Similarly, with compression ratio of 10.3, the indicated cycle work decreases from 588J/cycle to 481J/cycle (about 18%) with the same level of engine speed (Figure 9). When the engine compression ratio increases from 9.5 to 10.3, the indicated cycle work increases by 2.4% at 2000 rpm and by 5.3% at 5000 rpm.
 


 
Figure 10 compares the work diagrams of the motor fueled by gasoline, ethanol blended gasoline with different concentrations and biogas at 3000 rpm. It can be seen that with the same advance angle ignition the indicated cycle work in case of ethanol blended gasoline decreases slightly in comparison to case of gasoline. Specifically, when fueled by traditional gasoline, E5, E15, E30, the indicated cycle works are 511 J /cycle, 510 J /cycle, 506 J/cycle and 493 J /cycle, respectively. Simulationresults also showed that when powered by biogas containing 95% and 100% CH4indicatedcyclework is only425J/cycle and 426J/cycle. Thus the indicated cyclework decreases by 17% when switching from petrol to biogas with CH4 concentrations greater than 95%. It means that when running on E5 and E15, engine power is almost unchanged in comparision to running on gasoline. In case of E30, indicated cycle workdecreasesby 3% in comparision to when running on gasoline and this reduction can be overcome by adjust the ignition angle appropriately.


 
4. Analysis of emission pollutants
Figure 11 introduces the variations ofNOx concentrationin combustion chamber withthe enginecrankshaft rotation, corresponding tocompression ratio 9.5 and 10.3 and engine speed range from 2000 rpmto 5000 rpm.It can be seen thatNOxconcentration reaches a maximum value athigh temperature, then gradually decreases and maintainstability tothe end of the expansion.
This stable concentrations are considered as the concentration of NOx in engine exhaust. At a given engine speed, when the compression ratio increased from 9.5 to 10.3, the NOx concentration increased by 7%. This can be explained by the increasing of solvent temperature which accelerates the formation speed of NOx. As engine speed increases, the concentration of NOx fell sharply (Figure 12). NOx concentration in the exhaust gas decreases to 78.5% when the engine speed increases from 2000 rpmto 5000 rpm. The reason is that when the engine speed increases leading to the increasing of turbulent movement and burns the roots forming NOx.
Variations of CO concentrations withcrankshaft angle, is similar to NOx variation but steep sharply at high temperature areas (Figure 13). Increasingcompression ratio slightly increasesCO concentration in the exhaust gas.When the compression ratio increasesfrom 9.5 to 10.3, the concentration of CO in the exhaust gas increases only 1%.






 

Although there are significant differences in the concentrationof CO in the maximumarea,at the end of the expansion the level of difference of CO concentration is not large and the effect of compression ratio to concentrationof CO in emissions is negligible. As the engine speed increases from 2000 rpmto 5000 rpmconcentrations of CO in exhaust gas increased by 5% (Figure 14).
Influencesof fuel to the NOx concentration variation in the engine combustion chamber isintroduced in Figure 15. The simulation results are calculated with compression ratio of 9.5 and atspeed of3000 rpm. NOx concentration in the exhaust gas increases with content of ethanol blended with gasoline. When fueled by E5and E30,the concentration of NOx increase50 ppm(3%)and 250 ppm (15%) respectively, in comparison to the case of running on traditional gasoline(Figure 16).Meanwhile, in comparison with the gasoline, when powered by biogas containing 95% and 100% CH4, NOx concentration reduces to43% and 41%, respectively.
Unlike NOx, CO concentration decreases with increasing content of ethanol in petrol. Figure 17 introduced CO concentrationsvariation withcrank angle in case ofrunning on biogas and ethanol-blended gasoline atthe different components.

 

It can be seen that when content of ethanol increases, theconcentration of CO in the exhaust gas rapidly decrease. CO concentration reduction,compared to traditional gasoline,whenfueled byE5, E15 and E30 are 17%, 51% and 87%, respectively (Figure 18).Calculation results also showed that when content of CH4 in the biogas increases from 95% to 100% concentration of CO in the exhaust gas does not significantly change. Concentration of CO when running on biogas decreases 39% in comparison to running on gasoline and equivalent to running on E15.
Load also significantly affect concentrations of NOx in the exhaust gas. When the engine load is reduced,NOx emissions also decreased (Figure 19). This can be explained by the temperature of the mixture dropped reducing NOx creationspeed. Meanwhile the load changes almost does not affect level of CO emissions (Figure 20).



Intake air temperature slightly affected the level of NOx emissions. Figure 21 introduction of NOx variation with crank angle when engine is fueled by E15, compression ratio of 9.5 with intake air temperature is assumed 303K, 352K and 373K. It can be seen thatan increasingintake air temperature causes increasing of NOxconcentration in combustion products. This can be explained by the temperature of the combustion mixture increases with temperature intake air.These results indicate that NOx concentration depends on the temperature of the mixture. To reduce NOx concentrations, especially when the engine is running at low load, the modern engine is equipped with exhaust gas recirculation systems. After mixing the new intake air and exhaust gases (mainly CO2), the temperature of the combustion mixture decrease leads to lower levels of NOx in the exhaust gas.






 


5. Conclusion

The above research results allow us to draw the following conclusions:
1.      When engine is fueled by E15 with compression ratio increasing from 9.5 to 10.3, indicated cycle workincreases by 2.4% at 2000 rpmand by 5.3% at 5000 rpm. Conversely the motor indicated cycle workdecreasesby 20% when the engine speed increases from 2000 rpmto 5000 rpm.
2.      Without adjust the ignition angle, in case of using ethanol blended gasoline with ethanol content below 15%, the indicated cycle workis equivalent to the case of using traditional gasoline. When ethanolcontent increased to 30%, the indicated cycle workdecreased by 3% compared to the case of using traditional gasoline.When powered by biogas containingmore than95% CH4 the indicated cycle workdecreased by 17% compared to when running on traditional gasoline.
3.      Ata given engine speed, when compression ratio increasesfrom 9.5 to 10.3, the NOx concentration increasesby 7% and concentration of CO increases 1%. When engine speed increases from 2000 rpmto 5000 rpm, the concentration of NOx in exhaust gas decreasesby 78.5% while the concentration of CO increasesby 5%.
4.      Whenrunning onE5 and E30 , the NOx concentration in the exhaust gas increasesby3% and 15%, respectively,and CO concentration reducesby17% and 87%, respectively,compared to when running on gasoline. Meanwhile fueledby biogascontaining 95% CH4, NOx concentrations decreasesby43% and concentrations of CO reduction 39%in comparison to case ofrunning on traditional gasoline.
5.      When reducing the engine load, the concentration of NOx in exhaust gas decreasesbut CO concentration almost less varies with load. The concentration of NOx in the exhaust gas increase slightly with the temperatureof intake air, but decreases dramatically with content of emissiongas recirculatedinto the manifold..


References

[1].    Huseyin Serdar Yucesu, Tolga Topgul, Can Cinat, Melih Okur: Effect of ethanol–gasoline blends on engine performance and exhaust emissions in different compression ratios. Applied Thermal Engineering, Volume 26, Issues 17-18, December 2006, Pages 2272–2278

[2].    Mustafa Koc, Yakup Sekmen, Tolga Topgül, Hüseyin Serdar Yücesu: The effects of ethanol–unleaded gasoline blends on engine performance and exhaust emissions in a spark-ignition engine. Renewable Energy, Volume 34, Issue 10, October 2009, Pages 2101–2106

[3].    Richie Daniel, Guohong Tian, Hongming Xu, Shijin Shuai: Ignition timing sensivities of oxygenated biofuels compared to gasoline in direct-injection SI engine. Fuel 99 (2012), pp. 72-82

[4].    S. Phuangwongtrakul, K.Wannatong, T. Laungnarutai and W. Wechsatol: Suitable Ignition Timing and Fuel Injection Duration for Ethanol-Gasoline Blended Fuels in a Spark Ignition Internal Combustion Engine. Proc. of the Intl. Conf. on Future Trends in Structural, Civil, Environmental and Mechanical Engineering, FTSCEM 2013, ISBN: 978-981-07-7021-1, pp. 39-42

[5].    Bui Van Ga, Nguyen Viet Hai, Nguyen Van Anh, Vo Anh Vu, Bui Van Hung: in cylinder pressure analysis in biogas-diesel dual fuel engine by simulation and experiment. UD’s Journal of Science and Technology, Vol.01(86), 2015, pp.24-29

[6].    Bui Van Ga, Tran Van Nam, Tran Thanh Hai Tung: A Simulation of Effects of Compression Ratios on the Combustion in Engines Fueled With Biogas with Variable CO2 Concentrations. Journal of Engineering Research and Application www.ijera.com Vol. 3, Issue 5, Sep-Oct 2013, pp.516-523 (IF: 1,69).

Các bài viết khác...

Trang 1 trong tổng số 8

<< Bắt đầu < Lùi 1 2 3 4 5 6 7 8 Tiếp theo > Cuối >>