INTEGRAL MODEL FOR SOOT FORMATION
CALCULATION OF TURBULENT DIFFUSION
FLAMES IN INTDUSTRIAL FURNACES
Turbulent diffusion flames are widely used in industry because of their safety. Nevertheless, their efficiency and the pollution emission depend on the organization of the combustion medium and this fact needs knnowledge of the structure of the flame. The experimental measurement of the instantaneous and local values of oxygen and fuel is very difficult, and sometimes is impossible inside combustion chamber. So prediction by mathematical model is very helpful.
In this paper a model for calculating the soot formation in turbulent diffusion flames is presented. The turbulent nonpremixed combustion process is modeled via the conserved scalar model where the fraction mixture f is chosen as conserved scalar. The soot formation is calculated via the Tesner-Magnussen model. The equations system is closed by k-e turbulence model. The results given by the model is validated against experimental data on propane and gasoline flames.